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ment of experimental and correlational methodology. While others have

r-4
LC.% discussed various relationships between experimental and correlational

CD
c:3 methods (see Burt, 1947 and 1966; Creasy, 1957; Bock; 1960; McKeon, 1965),
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The principal concern of this paper is to facilitate a rapproche

Um,
the present unification, based explicitly on the work of Louis Guttman,

seems not to have been adequately discassed.

My specific aim is to show algebraically the major relationships

among conventional types of product-moment correlation coefficients

(including simple, multiple and canonical r's as well as partial and part

coefficients) and the standard metharls for analysis of variance (uni-

variate and multivariate, with or lithout covariates, fixed or random

effects). These relationships are shown through application of a rank

reduction theorem which Guttman (1944) first presented within the context

of fao:,or analysis. In focusing on an algebraic system no explicit atten-

tion is given to statistical inferential aspects of the respective methods.

Nevertheless, it is hoped that this paper will contribute to a better

understanding of certain inferential procedures and their interrelation-

ships. Restricting t'he discussion to elgebra should facilitate co.aputa-

tions for these met'nods and an easy-to-use computer program based on

Guttman's theorem is briefly described for such aprlications.

Suppose U0 is an N x p matrix which is associated with p

measures on each of N entities and that it is reasonable to examine certain

linear associations among the columns. If the pairs of variabl,s are

approximately linearly related, it will often be fruitful to examine the

product Uo' U0 which here will be designated as Vo. Few assumptions about
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the nature of the respective variables are required in so far as the

algebra of multivariate systems is concerned. Measures may be random or

fixed variables; they- may be associated with qualitative cr gi:antitative

responses; or they could be fallible or infallible, original C2 derived.

Moreover, certain variables in a given system might be labeled independent,

dependent or instrumental and the marginal or joint distributions ma3 have

an immense variety of forms over if scatterplc0-.s are taken to be approxi-

mately linear. Of course the interpretive uses of the derived stat.is",i0A

can never be guaranteed even 'Then the variates unHer study do satisfy

major assumptions for a formal method of analysis. No attempt is 1,:ade in

this paper to elaborate on appropriate uses of the statistics, or to

specify when subject-matter specialicts are apt to find them of inter-

pretive value, despite the ultimate importance of such questions.

The rank reduction theorem states that forapxpsmmetric,

Gramian matrix Vo of rank r, and 2 x s weight matrix W (such that

W' V
o
W is non-singular), the matrix

(1) V1 = Vo - vo W 04' Vo W' Vo

is a residual matrix of rank r s. Guttman (1952) pointed out that the

theorem can be repeatedly applied to successive residuals so that at the

jth stage one can generate apxpresidual

(2) Vj = - Wj (Wj' V
-1 0

W.)-1 W.' V.
0 J-1

where Vj is of rank r - (s1 + E2 + + Ed.
k

If there are k stages, then Vk will necessarily be null and X s. = r.

AlaW.'s must be distinct and each product (W' V W ) shculd be non-
J

singular.

My interest centers only indirectly on the rank-reduction

aspects of the theorem; the main interest is to identify certain entries
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of various members of (1) and (2) under differing specifications for

measures in the initial matrix Uo. It will be assumed for convenience

throughout this paper tiAt columns of Uo are scaled to have means of zero,

although this assumption may be relaxed at later points. Also, for con-

venience, it will be assumed that Vo is non-singular as well as Gramian;

this assumption is usually realistic whenever N>p, the latter being almost

universally desirable in practice. The remainder of this paper is divided

into three sections, on Correlational Methods F.74erimental Metho1 5: and a

Computational Synthesis.

Correlational Methods

In this section I :.hall first examine a special case of equation

(1); next a special case of equation (2) is considered; finally, brief

discussion is givQa with regard to some general factor analysis problems.

Begin by partitioning U0 by columns: U0 = Y.] . X is ox'

order N x s and Y is N x t where t p- s This leads to_ _
vxyxx

Vo = Jo Uo =v 1. While it was noted that in terms of algebra no
yx yy

restrictions are required for the variables iv U0 as to type, it may

initially be helpful to think of U0 as a set of E. random variables. Vr,

will usually be taken as a General variance-covariance matrix although it

will be useful at tines to designate Vo = R, apxrmatrix of simple

product-oment correlations.

Recalling (1), which states that V1 = Vo - V, W (IN" Vo
-]

Vc,

let the £ x s weight matrix be defined as w = Is is an

0

identity matrix of order s, andlisatxsnull matrix. The following

identifications may be made:

3



(1) Void is a p x s covariance matrix for the first s variables in

the system with respect to the entire set of variables. If

V, = R, then RW is clearly a rectangular matrix of correlations.

V
o
W may thus be written as ; Vxx !

1
or ; Axxl .

LVyxj

(2) W' V W is she covariance matrix xx for the first s variables.

If ! is replaced by Wn where Wn = WLn and Dn normalizes ,olumt.s

of VoW, then Wn Vo Wn is a simple correlation matrix for the

first s variables.

(3) VoW(W' Vo W) -1 isapxsmatrix of estimated least squares

regression coefficients. This matrix may be 'Aritten as

(4)

:12
A

where rows of Ry x are sets of s estimated least
.

y.x

squares regression coefficjerts for predicting the t

respective criteria (rows). If Vo = R t..id W' V, W fs Jplaced

by Wn R then rows of By are staLdarnized regression co-

efficients; the latter matrix may be written as 25,x
-1

RXX.

,

Vo W (4' Vo W)
-1 W' Vo is the covariance matrix o_ the entire

set of predicted portions of the variables. This matrix may

be considered as an approxmation to the initial Vo matrix,

V
written v =, ^

V
?cx ,?cY . Note, however, that the first s

yx yyj,

variables predict themselvea perfectly so ell elements of

Vo except V
Yy

are equivalent to the c-rresponding entries in

Vo when using this particular W. If 70 = R, then each diagonal

entry of Vyy = R. is a squared multiple correlation coefficient

associated with s predictors for one of the respective t

criteria. may be written as R R
-1

YY yx xx Rxy.
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V1 = Vo - Vo is the residual matrix which in this case will be

null except for Vyy Vyy. The normalized version of the residual

V(yy) = (V
YY

- Vyy) is the matrix of sth order partial cor-

relations between all pairs of t criteria. If s = 1, all

t(t - 1)/2 coefficients are 1st order partials.

(6) Given that Vo = R, the "half-normali2ti' matrix Ryy R. is

a matrix of part correlations. For example, if R(yy), = Ry U

which contains t comple.rents of squared mziltip3e eonditioDg as

its main diagonal entries, is multiplirsi on the right by the

diagonal nermalizinc, matrix D2
, then any column of

1(1 - smc.)
2-

coefficients in (R - R ) L.
yy yy kl - smc.)

will contain sth order

part correlations -- correlations letween an original criterion

variable and the error portions of the t criteria with respect

to the set of s oredictors.

Canonical correlations between the sets of s predictors and t

criteria may be found as the positive square roots of the

-1
eigenvalues of either the product Vyy Vyy , or in the

metric of Vyy (see Dempster, 1968). The same roots are associ-

-1
ated with Ryy Ryy. See Moredith (1964) for a discussion of the

algebra of canonical correlations under corrections for un-

reliability of the variables.

(8) Eigenvecters (right-hand) of V
yy

Vyy -1
)
here called 4j, define

the canonical variatcs for the t criteria with respect to the

set of s predictors. The t dimensional column characteristic

-4 -1 -
vectors qj may be computed es qi = Gy'f),

Y
v
j

where Gy is the

set of (unit-length) columns of eigenvectors of Vyy, /N. yl is

the diagonal matrix of reciprocal square roots of eigenvalues
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0-1: andand each V is an el,en vector of the symmetric matriJ:

d'N. 0.1 Vyy Gy ./rt
V.

(Most algorithms for generating roots

and vectors require symmetric matrices.) The set of canonical

variates for the s predictors can be found by using
r')

It

and proceeding analoously--tens reversing the roles of the

predictors end the criteria.

Paragraphs numbered (9) - (16) are analogods to those numbered

(1) - (8) except that equation (2) of Guttmau's theorem is now considered,

this leading to partial statistics of various kinds most of which are

direct, albeit cemplex, counterparts of the statistics already identified.

NEquation (2) states that V
j

= V
j-1

- V
j-1

W
j

(W
j

' V
j-1

Wjj
-1

Wj ' V.

Each matrix W. shall be taken to be of the simple form C where s is
j

I
,

--,ii--,ii

.

L ,

J

the dinc.nsionality of the matrix I
s

; thus Wj is of order E x s.. It will

k

oe converient here to assume that 4"-- s = s, so that the ST'. of p4

j=1

variables in U
o

can be considered as a set of s = gl s2 sk

predictors (X) which is adjoined to t = p - s criteria (I). Further, let

s* be sj' for a particular
j=1

Given the above specifications, the following identifications

may he made:

(9) Vj_l Wj is a p x s. rectangular matrix of partial covariances.

Analogous to Vo W1 in paragraph (1), Vj..1 Wj is just a vertical

slice of Vj_1, the latter being a matrix which is described in

paragraph (13) below.

(10) Wj' Wj is an si x matrix s*th-order partial
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covariances for the set of predictors at the j'th stage. If

colmnsof Wj
3are

scaled to normalize columns of V.
-1

W ,

as in Vj_l Woj, then at stage Wnj, is a matrix

of (s* - sp)th order partial correlations among the sj,

predictors.

(11) Wj (Wj' Wj)
-1

is a p x sj matrix of partial re-

gression coefficients. In general, the sjI predictors at the

j'th stage are error portions of a particular sct of predictors,

viz., those portions of s , variables which are not linearly

predictable from the preceding s* - lj, variables. Thus, the

-1
lower t x sj, portion of Vj,_1 14j, (Wj, Vji_i Wil) is a

matrix each row of which contains semi-partial regress.:.on co-

efficients for predicting a sinbie criterion from certain

residuals associated with tne s,J , criteria.

(12) V.J-1 W
j

(U
j

' Vj_1 W
j
)-1 W.' V may be viewed as an approxi-j-1 -

^
oration Vj_i tc the Vi_l matrix with which it is associated.

At stage j', Vjl_l is properly regarded as a set of partial

covariances among the portions of sj, predictors which are not

linearly predictable from the preceding a* - sj, predictor

variables and the remaining residuals in the system. If the

A
initial Vo = R, then diagonal entries in V(yy) = R, ,

lYY/p_i

contain squared multiple-partial correlations--those (error)

portions of the respective t criteria which can be predicted,

using a multiple linter eq...ation, from the errors associated

with the sji variables as described above. Given that

14
0

= the sum of all k such squared multiple partial
J.'

coefficients for a particular criterion variable is necessarily

7
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equal to the squared multiple correlation coefficient asso-

ciated with the entire set of s predictors. If

si = s2 = = sk = 1 so that k = s, then principal diagonal

entries in are squares of conventional semi-partial cor-

relations. It should be noted that values of a set of k semi-

partial or multiple-partial correlati.os (or covariances)

are conditional on a particular ordering of the k sets of

predictors unless the k sets are mutually orthogonal.

RozebooLl (1966) is an excellent source on this variety of

statistics.

(13) V = V, - isapxpmatrix of partial covariances
j J-1 - V is

also. At the j'th stage of application of equation (2),

V., is null in its first s* rows and columns. The lower t x t

portion Vt.
/Y)

\

it
is a partial covariance matrix for the

.

(s* - sp)th order residuals of the t criteria with respect to

the portions of the s,, predictors which are orthogoncl to the

preceding s* - si. predictors. If Vo = R at the onset, then

the diagonal entries of V("i)
it

contain proportions of variance

of the respective criteria which remain to be predicted after

employing s predictors in a linear prediction system. As one

moves from the j'_ 1 to the j'th stage, equation (2) states

that increments of error variability for each criterion variable

must be reduced by the amount of the scoared multiple-partial

correlation described in paragraph (12. The normalized form

of either Vf,,N.. or R, t contains semi-partial correlations
"7"J' lYY)ji

among the pairs of t criteria after holding the (s* - sj,)th

order error portions of the set of aj, predictors constant.
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(14) If V = R at the onset then the "half-normalizec" version of

the t x t racrix li(yy)i, contains semi-part correlations.

For example, if R(yy)j, is ,.lultiplied only on the right by

its normalizing diagonal, then a column in the product matri7

contains correlations between an (s44 - s ,)th orde-2 error portion

of a particular criterion variable and the set of t - 1

criterion residuals which cannot be linearly predicted fi-em tle

sj)th order errors of the 2.j, predictors at sta,i;e j'.

(15) Canonical partial correlations between a particular set of

(s* - sil)th order residuals for sj, predictors and the asso-

ciated set of criterion residuals can be obtained us in para-

graph (7): such canonicals are the positive ::quare roots of

the fAenvalnes of a matrix of the form V(yy)j, V(yy)ii

SucU canonicals are indeed general since they subsume prac-

tically all of the preceding correlation coefficients as

special cases.

-
(16) Eigenvectors of V(1 define the canonical variates

at the j'th stage for the (error portions of) criterion

variables with respect to (s* - rJ )hh order error portions of a

particular set of s., predictors. Such canonical variates may

also be generated from a symmetric matrix as described in

paragraph (8).

The foregoing correlational analysis is based on equations (1)

and (2) of Guttman's ran;; reduction theorem where the weight matrices

have particularly simple form. Mucci of what was presented has been

"available for over fifty years. In addition to the synthetic aspects

of the present elaboration, its chief virtue may be to automate the

9
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computation of practically all of the preceding statistics through straight-

forward application of a simple theorem, a computer program for which may

be readily developed for any digital computer.

If the Wj matrices are allowed to range more broadly, an immense

variety of other methods can be identified with respect to equations (1)

and (2). For instance, starting with observed variables in Uc, where

Vo = U0' Uo, if the set of k weight matrices Wj (each of the order

p x sj) are allowed to range over all possible distinct arrays, all types

of component analysis can be defined. If each Wj is a distinct eigen-

vector which corresponds to the initial Vo (of rank k = 0, then eq'iation

(2) specifies the exhaustive set of principal components of Vo. If

Vo = R, then principal component analysis .s defined as it is typically

employed. Of course, the usual approach to pc analysis, and common

factor analysis as well, does not involve a priori specification of weight

matrices; derived factors can, nevertheless, be defined in terms of the

rank reduction theorem.

If Vo is replaced by a Gramiah variance-covariance matrix of the

"common portions" of variables, say, Vo - Du
2 , where Du

2
is a p x p

diagonal matrix of uniqu,'ness variances, then any set of (Thurstonian)

2
common factors can be generated for a given V - Du, using a specific set

of weight matrices WI, , 11k. Guttman (1952) discusses certain

aspects of the latter variety of applications in some detail.

Other varieties cf "factor analysis" can also be associated with

the rank-reduction theorem. Vo may be taken, for example, as the

variance-covariance matrix of the "images' of the initial p variables

(see Guttman 1953) or some "reproduced" portion of this matrix using a

rpunber of factors (e.g. see Harris, 1962).

10



For any such approach to factor analysis, based on either (1) or

(2), Guttman noted that one could, by choosing weight matrices appropriately,

avoid completely the task of "rotation" -- or factor transformation.

Indeed, Guttman (1952) argued that interpretable factors based on weight

matrices chosen a priori, presumably using a particular scientific justi-

fication, are apt to be most compelling. While space limitations pre-

clude a discussion of this argument, it is clear that there are special

virtues of a direct analysis of a complex of variables using Guttman's

rank reduction theoren. Those who are interested in a modern-day version

of such "Proceustes" factoring are encouraged to study the monumental work

of Karl JO'reskog (1969,1970)on analysis of covariance structures.

Equations (1) and (2) can be shown to be a sufficient basis for

defining other methods as well, but we shall emit discussion of such

possibilities in order to proceed with applications associated with

analysis of variance.

Experimental Methods

In this section Guttman's rank reduction theor.m is used as a

vehicle for generating sums of squares and cross-products which form the

basis of computations for a ride variety of inferential .:,ests in the

analysis of variance. It will 1)0 seen that the algebra of correlational

methods, as presented in the preceding section, subsumes tue algebra of

practically all of the standard forms of analysis of variance including

those involving multiple dependent variables and covariates for fixed or

randcm effects. Moreover, many (baltnccd) incomplete designs may be in-

cluded within this paradigm.

It should be noted again in passing that questions of "meaning-

fulness" of sample statistics are not being considered here. Any

11
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interpretative use of derived statistics involves distributional theory- as

well as assumptions about the nature of data for any given study. Need-

less to say, such factors should be given careful attention if any of the

extant methods are to be employed in data analysis. Depending on what the

investigator determines to be a reasonable choice of independent and

dependent variables in a study, the procedures of this paper can be readily

applied using a simple computer program as discussed in the final. section.

Again it is convenient to consider an N x p matrix U0 which is

partitioned into a set of s predictors X (usually called independent

variabl?s) and a set of t = p s criteria Y (usually called dependent
....

Vxxi Vxy

variables). Thus, U0 = E x Y 3 and Vo . U; U0 = ; again,
Vyx: Vxx

also for convenience, columns of U0 wall be taken to have zero means, which

implies that Vo is a sum of products matrix of a covariance matrix. The

rank reduction theorem of equations (1) or (2) will be used with weight

[

0

matrices W or W1, W2, ..., Wk of the same simple form Is as were

--J
SI

empl,yed in the foregoing section.

The reader may prefer to think of dependent variables Y as con-

tinuous random variables while X may best be viewed as a set of fixed or

random variables. In particular, let inderendent variables be partitioned

into a set of contrasts XA (which may correspond to "planned comparisons ",

"main effects" or "blocking variables"), contrasts XB (which nay be

associated with classical "interactions" of two or mere main effects) and

random variables X (w:iich ray be associated with "covariates" as in

covariance analysis). Further, each of the subsets XA, XB and Xc will in

turn be vertically lah'rtioned to alio Jr designs of relatively more

12
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complexity as when, say, three main effects (X/1, XA2, XA3) are studied,

using four interactions X and two sets of covariatcs
(- B12, XB13, XB23, XB123)

(XC1) XC2)*

The plan for the remainder of this section is to enumerate in

paragraph form how the rank reduction theorer may be employed to generate

sums of squares and cross-products for the major types of designs (one

:actor, factorial or nested each being with or without covariates) for

either univari ate nbalysls (AN(NA/ANCOVA) or multivariate analysis

(61ANOVA/MANCOVA). Attention will be initially E',stri,:tri to orthogonal

factorial designs. After discussi.,g the formal algebra for major design

categories several issues which pertain to alplications are briefly ex-

amined. Reference is made to examples in the Appendix to facilitate the

exposition.

One Factor (M)ANOVA

In the case of conventional one factor ANOVA or MANOVA, as in the

fully randomized design, equation (1) of Guttman theorem is sufficient

to generate desired product rttrices. The matrix X, or XA, of Uo is taken

as a set of s = J - 1 contrast vectors when there are J groups Y is a set

of t response variables; t 1 for univariate (ANOVA) studies or t >) for

multivariate (MANOVA) studies. Example 1 in the Appendix, which is also

examined in Pruzek (1971), depicts contrast vectors for a simple four

group MANOVA where t = 2. The Guttman theorem may be used as

V1 = Vo - Vo W (VV
o
W)1411V

o
for W = is ; the lower right t x t0 _

portion of the three respective matrices may be written V(yy) = Vvy - Vyy

CT, in more conventional terminolca, E = T - B, where T is the total sums

of squares and produces matrix, B is the between or among matrix of sums of

squares and products; i is the residual or within matrix. Univariate



analyses correspond to these being 1 1 matrices, i.e. scalars. The

particular scaling of columns of Y are irrelevant with respect to statistical

te3ts since all standard test results are known to be invariant with respect

to linear transfoimations of dependent variables.

It should also be noted she s contrast vectors may be associated

with individual degrees of freedom; if the contrast vectors correspond to

particularly "meaningful" comparisons of various combinations of groups,

then equation (2) designates the usual planned comparison approach where

si = E2 = = sj_i = 1. If the contrast vectors are not mutually orthog-

unal, then difficulties will typically arise in interpretation of the

planned coLi:arisons for a particular ordering of contrasts. Orthogonal

planned comparisons are therefore apt to be most useful. The reader may

wish to satisfy himself that the basic computation; for maly post-hoc tests

may also be carried out within the present context.

One Factor (14)ANCCVA

The fundamental distinguishing feature of a covariance analysis

is that the independert variable set includes one or more (antecedent)

random variables in addition to fixed variables. For one-factor analysis

of covariance, X is comprised of XA and Xc matrices as in X = (XA;Xc). In

this case two stages of equation (2) are required to generate matrices for

tie analysis of covariance. First, for a set of sl covariates, use

0

W(1) = 7s2 and note that the lower t x t portions of the three product
0

product matrices in V(1) = Vo - Vo W(1) (1461)V0 W(1))-1W(1)V0 correspond to

the equation V(yy)(l) = Vyy Vyy or, in standard terminology, T* = T - T

where T represents the portion of the total variation fnr t variables

which is linearly associated with the covariates. While one might naturally

14
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be led to find V
2
using equation (2) where the weight matrix selects con-

trast vectors in X, covariance analysis is not approprjately done this way

since to do so would be to improperly specify regression coefficients.

Rather one generates V1 = Vo - Vo W1 (WiVo W1)
-1
W1 Vo where Wi =

Is

for s
1

= J - 1, the number of contrast vectors in X A and follows by finding

-1
V2 = V1 - V1 W2 NV' W2) Wpi where W2 = , i.e. W2 = W(1). Since

0

the lower t x t portion of V1 is of the form E = T - B, it fo3lows that the

A it

lower t x t portion of V2 is E* = E - E where E is the portion of the within

groups variation linearly predictable from the set of s2 covariates. One

factor MArCOVA thus requires T* and E* as well as B* = T* - El as its sums

of products matrices for any of the standard MANOVA tests with appropriate

degrees of freedom. See Bock and Haggard (1968, p. 130) for a further dis-

cussion of this method. For an illustration consider Appendiz example 1

where for purposes of illustration the 1st response variable is taken as a

covariate with respect to the second response variable.

Factorial Design (M)ANOVA

Computations for factorial designs may be generated by using XA

and X
B
matrices which are comprised of aggregates of contrast vectors. Any

particular aggregate of contrasts lriy be viewed as specifying ;:omparisons

among defined groups of (vector) observations. Example 2 in tae Appendix

includcs an X matrix which might be employed for a 2 x 3 factorial design.

Reference will be made '.:4) this example in the following general discussion.

If all subgroups associated with a factorial design are of equal

size, then contrast vectors for different main or interaction effects will

be mlitually orthogonal. This implies that the ordering of effects is

15
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inconsequential with respect to the magnitudes of the derived sums of

products matrices or the associated test statistics. If cne desires a set

of ki main effects, he simply specifies XA =[ XAll XAk I as a set
1

of appropriate contrast vectors, as in example 2. Each aggregate of con-

trasts corresoonds to a row partitioning of (vector) observations in

the dependent variable set Y. Successive applications of Guttman's theorem,

following equation (2), generate Vo, V1, V1-'l as well as the approxima-

tions Vo, V1, ... lily the lower right t x t portions of these products

contain useful matrices for MANOVA computations. The set Vyy, V(yy)1,

V(YY)2' "" V(YY)ki and the final residual V(yy)ii. = V(yy) - (V(yy)i. +

1

V(yy)ki) are simply the total sums of products for ki factors (main effects)

and, ultimately, a residual matrix. If interaction effects are desired for

any combination of effects, these are obtained using applications of

equation (2) with respect to X
8 = r X812, X 1313,

..., X 8k2 for k
2

the

number of interaction effects. Each aggregate of interaction contrast

vectors may be found using elementwise products of entries in contrast

vectors associated with a particular combination of main effects. The

necessary sums of products matrices now will be Vyy, V(yy)l, $900

V/(yy)ki
V (yy)k

1
+.1 V(yy)k

1 k

and the final residual Vf \,

YY/1 k2.

The degrees of freedom for a particular effect are always equal to the

number of vectors in a particular aggregate; this is true for main effects

or interactions. See example 2 below and tae analyses of this 2 x 3 design

by Morrison (1967) as well as by rruzek (1971). If, as is being assumed

here, the subsets of contrasts in X are mutually orthogonal, then any t x t

matrix of the form V(yy)j will be the same, whether computed as

V
J-1

W (WV
J i-3

W )-1VIV
J-1

or as V
o

W
j j

(W' V
o
W
j
)j 114'17

00
thP latter fact
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may be especially useful in applications where only a computer program for

product-moment coefficients is available. See Bock and Haggard (1968) for

an excellent review of the statistical considerations for MANCOVA applica-

tions. Also see Mendenhall (1968) for more discussion of the linear models

approach to ANOVA, and Graybill (1961) for technical details.

Factorial Design (t4)ANCOVA

This class of methods simply adds a special wrinkle to the

methods reviewed in the preceding paragraph. The major null hypothesis with

which either ANCOVA or MANCOVA is concerned is that particular effeot,s are

null when dependent variables are linearly adjusted to the values they

ostensibly would have if all relevant groups of entities were eclivalent to

one another on the antecedent variables. Since Bock and Haggard (1968)

present the general matrix approach to MANCOVA, it is necessary here only

to express their results in the terminology of this paper.

Once all of the sums of products matrices for effects of the pre-

ceding paragraph are computed, as well as a t x t residual matrix E, then

one proceeds to generate a "corrected" residual matrix E
*
= E - E where E

represents the portion of the residual variation which may be attributed

to the set of covariates in X
c
and a special "corrected" total matrix for

each effect of interest. A separate subtotal matrix must be computed for

each effect in order properly to generate the minuend with rJspect to which

E* is the subtrahend for producing the corrected effects matrix of scams of

products.Thatis,T*=T-T.where"j repre-ents the portion of the

matrix Tj = E + V(yy)j which is linearly predictable from the set of co-

"
variates in Xc. Then Vty)j = Tif - E* as required for the jth effect in

MANCOVA. Bock & Haggard point out that any of the standard multivariate

tests may be applied to the matrices lityy)i and F* using the usual degrees

of freedom for effects and error degrees of freedom d.f.e - k3 for Ic.R the

17
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number of covariates.

Nested Design MANOVA/MANCOVA

The concept of nesting has already been tacitly discussed in the

foregoing paragraphs of this section. Whenever one replicates a particular

experimental combination in order to generate a group of (vector) observa-

tions, the observations within the group are properly regarded as nested.

If, as in orthogonal designs, one nests the same number of observations in

every experimental group then the final residual matrix, say E, may be

regarded as an aggregate of nested effects nspcwinted with entity varinti,n

within groups.

This concept may be generalized, however, as when a set of

factors for a design f.s hierarchically arranged. The computations for

nested designs are entirely straightforward with respect to the results

already given for general factorial designs. The major distinguishing

feature of computations for ne, ed designs is that interaction effects

have no meaning so thEt depending on the "tier" of a factor in a hierarchical

design, computation of the effect matrix involves pooling contrast vectors

which for factorial designs had been associated with interactions and with

main effect contrast vectors. As an example if three factors 1, 2 and 3

are hierarchically Arranged as 1, 2 within 1, 3 within 2 within 1, then

contrast vectors for the three effects of this design would require three

Wj matr'.ces using equation (2) which selected) X/11 1 [ 42! XB12]

and
51 B123

] of the contrast matrix X. See Winer (1962)
5

for details of the discussion of computations and interpretations of

effects for these designs. Multivariate extensions of his discussion are

immediate.

Covariance analysis for nested designs could be done along the
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same lines as discussed in the preceding paragraph were an investigator to

regard this as useful.

Incomplete Design MANOVA/MANCOVA

The limited objective of this section is to present an approach

to the analysis of balanced complete designs under the rubric, fractional

factorials. These designs formally include latin square designs and

balanced incomplete block designs so to cover fractional factorials in

detail is to be reasonably comprehensive. It should be noted, however,

that there are incomplete designs, particularly unhainnoed ilLorriCetP set-

ups, which do not lend themselves to a matrix-based analysis.

Fractional factorials may be characterized as factorials from

which selected experimental combinations have been systematically deleted

to allow study of a relatively large number of factors using a relatively

small number of experimental units. The deletions amount to taking rows

away from the design matrix X to yield X* so that contrasts ea.in in X*

(i.e. means of columns of X* are zero). Thus, equation (2) of this paper

suffices to generate sums of products matrices which are commonly used in

statistical tests as 1,1 the paragraph on factorial designs above. For the

nostusedvarietyoffractionalfactorials,the2)c-Pdesigns,the 41. matrix

for the jth effect is simply a vector of the form 1

[

where
0

the value of unity corresponds to the jth contrast vector in X* -- the jth

effect. See Mendenhall (1968) for a discussion of 2
k-p

designs within the

ccntext of linear models and McLean (1966) for an example which, because

the author gives raw observations, is readily susceptible to analysis

using the approach suggested here.

As with nested designs, covariance analysis can be conducted for

these inccmplete designs using the methods of the paragraph cm MANCOVA.

19
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Although the foregoing discussion is abbrevfAted and largely

restricted to computational methods, I do not wish to convey the impression

that I condone a cavalier approach to choosing either independent or

dependent variables. Some commentary regarding issues and general prob-

lems of experimental analysis may therefore be useful.

Regarding the approach generally, which is based on Guttman's

rank reduction theorem, two references should be cited. Suits (1957)

discussed the issue of dummy variables in regression pointing out that

two or three different regression approaches may be taken to the specifi-

cation of independent variables for the analysis of variance. It was

made clear that the contrasts approach is not uniquely appropriate despite

the fact that it lends itself to a particularly simple gnalysis for

general applications and facilitates a comparison of experimental and cor-

relational analyses of data, The second reference is Beaton (1964) which

includes a discussion of a "Sweep" operator for matrix calculus which is

in certain respects closely related to the present approach. Dempster

(1968) discusses Beaton's operators in some detail and applies them in the

analysis of multivariate data.

Another issue is that of selecting dependent variables for

analysis. If an investigator is primarily inte.-_sted in statistical tests,

especially those which are likely to require less stringent assumptions

about data than conventional parametric tests, he may study the approach

of Gabriel and Sen (1968). These authors present a test statistic based

on ranked scores which may be derived using the algebra of the present

paper where each column of observations in Y is taken as a set of ranks.

Their chi square statistic is shown formally to specialize to the Xruskal-

Wallis statistic for ANOVA using ranks as well as the Wilcoxon rank scores

test.

20
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The more general problem of selecting metrics for dependent

variables continues to be studied. In the case of experimental data,

strong arguments have been made (see Tukey and Wilk, 1966) for transform-

ations which reduce the portion of variance for non-additivity of a

variable. That is, one should choose the metric for a variable in such a

fashion that interaction effects will be relatively small in relation to

main effects. Pruzek (1971) discusses the general issue of choosing

dependent variables further with some attention to the issues of variable

unreliability and choices among transformations. Various plots of residual

values (see Wilk and Gnanadesikan, 1968) become essential when examining in

detail the appropriateness of a model for analysis; in the next section a

computational approach is outlined for computing residuals for various sums

of products matrices of the present paper. Textbooks such as Mendenhall

(1968), Winer (1962) and Hicks (1564) should be consulted for discussion of

issues relating to the selection of independent variables in ANOVA,and

Bock (1963) and Bock and Haggard (1968) are strongly recommended for dis-

cussion of the matrix approach to MA1OVA and MANCOVA.

Computational Synthesis

The major objective of this paper has been to unify classical

correlational and experimental approaches to the analysis of data with

respect to the algebra of computation. It has been shown that a single

theorem, originally due to Guttman (1944, 1952), can be seen to provide a

vehicle for drawing these well-known classes of methods together. Refer-

ences have been given throughout the payer to facilitate the read:T's

further study of the relationships with respect to a wide variety of

issues anl problems which are commonly encountered in scientific research.

A computer program has been written to generate all of the

matrices of equations (1) and (2) for Guttman's rank reduction theorem.

21
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The program is presently written to read in data in the form of a cross-

products (or covariance, or correlation) matrix Vo and a series of weight

matrices, Wj, which are to be specified according to the user. (The pro-

gram is being modified to read in "data" matrices of the form U0 and to

allow "on-line" specification of a sequence of weight matrices; these

improvements should substantially facilitate instructional uses of the

present approach besides permitting more convenient computation of various

residuals, as is noted below).

Outputs of the program are most conveniently labelled in the

language of factor analysis; however, the reader may wish to make reference

to either of the first two sections of this paper to help interpret entries

of the respective matrices. Ecuation (1) corresponds simply to a special

case of equation (2) so no further attention is needed for the simper

equation.

Given V, and W1, 12, ..., Wk, the following matrices are inclrded

in the output:

(a) Wnj for j = 1, ...,

This is a pattern matrix for the primaries in general.

(b) WrIjVj..1 Woj for j = 1, k

This is the correlation matrix of the "primaries" in the

language of factor analysis.

(c) V. W (W V. W )
-1

for j 1, ..., k
0-1 nj nj j-1 nj

This is the structure matrix for the "primaries"; entries are

properly regarded as regression coefficients.

(d) V. W WI V W )-1W V. for j = 1, k
J -1 nj J-1 nj nj j-L

This is an approximation, Vi.i, to the matrix Vi_i which is

based on variables which are selected by W.J .

22
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(e) V. = V. - V. W (WI V W )-1W' V for j = 1, k
j j-1 J-1 nj nj

V.
nj nj J-1

This is a residual matrix associated with the comparison of

Vj..1 and Vj_1. Tha lower t x t portion of tnis matrix may

be of special interest in applications if Wj matrices are

chosen in the fashion of this paper.

(f) Dn Vj Dn for all j = 1,

This is a matrix of partial correlations associated with

any pairs of variables for which the diagonal elements of

Vj exceed zero.

The set of products (a), (b) and (c) may also be generated without

scalingW.to normalize Vj_1, as when raw score regression coefficients are

desired.

: apple 1 of the Appendix gives the initial U0 X: Y for a

t = 2 one factor MA1OVA as well as the associated V
o

and the derived

matrices E = T - b, each of order 2 x 2. Columns of X have been chosen to

correspond with orthogonal polynomials since doing the analysis in this way

allows quick hand check..; of the results; Vxx = X'X is diagonal as is

V
-1

. (The reader may wish to satisfy himself that in this context
xx

orthogonal polynomial coefficients offer great potential for genera] appli-

cations of factorial design MA.NOVA regardless of whether factor "levels"

are quantitatively related to one another.) The required (corrected) suns

of squares for one - factor MANCOVA are also given for this example follow-

ing the strategy of paragraph (2) iZ the second section. For this illustra-

tion the first dependent variable is used as a covariate with respect to

the second.

The next example in the Appendix gives the raw data for Y and two

alternate design ,riatrices, labelled Xa and Xb, for a 2 x 3 factorial design
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MANOVA. The data are taken originally from Morrison and are also included

in Pruzek (1971). The Vo matrix is scaled to correlation metric and this

Vo is used to derive sums of products matrices for testing the effects for

Rows (SEXES), Columns (DRUGS) and Interaction (SEXES & DRUGS).

It should be clear from these examples that the algebra is

equally appropriate for many more general applications of either correlation

or regression analysis.

Finally, it should be helpful to indicate how one might generate

matrices of residuals Given matrices of the form Vi, Vj_1 or and the

algebra of Guttman's theorem. Such quantities are easily derived using

matrix equations.

The classical least squares estimates of factor (or component)

scores in factor analysis may be expressed in present terms as

tT = U0 Vo
-1
Vo W 0/Ivo v1)-1

Howcrer, within the context of this paper, where estimates of dependent or

criterion scores Y are of special interest, one can use the equation

-1 -1VV= Yo yy yx VNXVxy

which may also be written

A -

Y = Yo VYYV(YAi

Thus, to Generate residutLs at any stage j', one needs only to compute

-1 -1
Yo V(yy)ilf(yy),1 which can be shown to be equivalent to Yo V(yy)v(Vjf_l -

for the differences between estimates at stage j(-1 and stage j'.
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fOTENDIX

T3xamnle 1

Ctiven the data in the unle nortion of Table 1, the sums of

nroducts matrices, of orde?- 2x2, were de-rived for erro.,, total and between

sources of vafiation. These matrices are designated 7, T and n and are nre-

seated in the lower portion of Table 1. ?'or covariance analysis, using

the 1st denendea variable as a covariate for the second, these ccv:rected

sums of squares are T* = 28 - (240)2/1724, 3 - (4)2/':0 and = 18.80

2.247 = 16.33.

7xamnle 2

Table 2 includes the raw scores for y as well as the deviation

scores Y (either of which will i3Ineate the desired effects matrices below)

and two possible design (X) matrices for gene:atin!17 sums of n.oducts fo', a

2x1 WOO VA t 2. The data are taken from l'orison (16g68). Table 3

includes the V
o

matrix scaled in correlation metric as well as the associa-

tee sums of nloducts matrices from rhich statistical tests may be carried

out (see 7)2uyek (1971) for an analysis of these data which follows these

lines). 'ne matrix X
a
was used o this narticula- Vo'



Table 1

Independent and Dependent Variable Values and Sums of Products
For a t = 2 MANOVA with n = 2 for Each of 4 Groups

)(

3 1 1 2 -1

3 1 1 5 4

1 -1 -3 2 -1

1 -1 -3 6 -1

-1 -1 3 1

-1 -1 3 -5 -1

-3 1 -1 -5 -2

-3 1 -1 -7 -1

4 4o3o 174

E = , T =

4 3 4o 28

144 36

36 25
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Table 2

An Example of Data and Two Possible Design Matrices
for a 2 x 3 Orthogonal MANOVA where p= 2 and n= 4

Y* Xa

5

5

6

14

I ( 1 1 1 0 ' 1 0)

9 9

7 6

7 6

7 7
II ( 0 1 i 0 1)

9 12

6 8

21 15

14 11

III ( 1 i -1 -1 1 -1 -1)

17 12

12 10

7 10

6 6
IV (-1 1 1 0 i -1 0)

9 7

8 10

10 13

8 7

V (-1 i 0 l 1 o -1)

7 6

6 9

16 12

14 9
VI (-1 i -1 -1 1 1)

114 8

10 5

Xb

( 1

(-1

( -1

1 1 1

0 -2 i

' -1 1 -1

1 1 -1

0 -2 i 0

-2)

1)

-1)

2)

(-1 I -1 1 s 1 -1)
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Table 3

Certain Matrix Products1 Associated with
Morrit3on's 2 x 3 MANOVA with t= 2

ulu (rescaled in correlation netric)

1.00

1.00 1.00

.00 .50 1.00

.00 .00 .00 1.00

.00 .00 .00 .50 1.00

.040 -.765 -.716 -.173 -.148

.060 -.443 -.258 -.406 -.295

1.00

.714 1.00

A
V
YY V(YY)1

V(.5)2
V

A
4

(YY)3 V(YY)3

_

[

,-/1.00 .714 .002 .002 .733 .355 .035 .078 .230 .279
4

1.000 .001, .199 .176 .622- _ - -

For symmetric ratrices, only upper-riOt portions are given
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Errata for Pruzek's "Unification of Methodology"

Page

16

Correction

5

6

7

13

17

19

24

&

Para. (8), 1. 4.

Line 1.

Para. (11), last I.

To p. 13, to and
middle of p. 16.

1. 3.

1. 4.

Last equation &
sentence which follows

--+ -1 -4' ,,

Should read "computed as gj= Gyivy vj

Should read "of V
YY

and.."

Should read "with the sji predictors."

Contract matrices should be vertically
partitioned, as in (XA1 : XA2: XA3).

Should read "considerations for MANOVA.."

Should read "balanced incomplete designs.."

A I i.
v, = Yo Yyy V(yy)j
'

1 Aand "Yr Viyy)j, V(yy)j, which can be shown

to be equivalent to YoV(yy)j,(Vp_1-Vp_1)"

Appendix Ex. 2, 1. 1 & 2 delete words between "raw scores for Y.."
and "..and two possible design (X) matrices"

Table 3 footnote Should read ".. only triangular portions are
given "
.. also upper portion of U

0
",1

0
should read

3.1

roo

.00 1.00 (etc.)


